Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data

نویسندگان

  • Peng Lai
  • Qihua Wang
  • Heng Lian
چکیده

In this paper, we present a generalized estimating equations based estimation approach and a variable selection procedure for single-index models when the observed data are clustered. Unlike the case of independent observations, bias-correction is necessary when general working correlation matrices are used in the estimating equations. Our variable selection procedure based on smooth-threshold estimating equations (Ueki, 2009) can automatically eliminate irrelevant parameters by setting them as zeros and is computationally simpler than alternative approaches based on shrinkage penalty. The resulting estimator consistently identifies the significant variables in the index, even when the working correlation matrix is misspecified. The asymptotic property of the estimator is the same whether or not the nonzero parameters are known (in both cases we use the same estimating equations), thus achieving the oracle property in the sense of Fan and Li (2001). The finite sample properties of the estimator are illustrated by some simulation examples, as well as a real data application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrap Model Selection in Generalized Linear Models

Model selection is a central component of data analysis Though there are a variety of methods for likelihood based estimation methods there are relatively few for non likelihood based generalized linear models GLM such as in the quasi likelihood and generalized es timating equation GEE approaches In this paper we develop basic and bias corrected bootstrap approaches to estimate the predictive m...

متن کامل

Generalized Additive Partial Linear Models for Clustered Data with Diverging Number of Covariates Using Gee

We study flexible modeling of clustered data using marginal generalized additive partial linear models with a diverging number of covariates. Generalized estimating equations are used to fit the model with the nonparametric functions being approximated by polynomial splines. We investigate the asymptotic properties in a “large n, diverging p” framework. More specifically, we establish the consi...

متن کامل

Analyzing Longitudinal Data Using Gee-Smoothing Spline

This paper considers nonparametric regression to analyze longitudinal data. Some developments of nonparametric regression have been achieved for longitudinal or clustered categorical data. For exponential family distribution, Lin & Carroll [6] considered nonparametric regression for longitudinal data using GEE-Local Polynomial Kernel (LPK). They showed that in order to obtain an efficient estim...

متن کامل

Robust estimating equations and bias correction of correlation parameters for longitudinal data

The estimation of correlation parameters has received attention for both its own interest and improvement of the estimation efficiency of mean parameters by the generalized estimating equations (GEE) approach. Many of the well-established methods for the estimation of correlation parameters can be constructed under the GEE framework which is, however, sensitive to outliers. In this paper, we co...

متن کامل

مقایسه‌ ماتریس‌های همبستگی عملی تحت مدل‌هایچندمتغیره همبسته با اندازه‌های تکراری: کاربردی روی M‏RIT2* قلب و کبد بیماران تالاسمی

Background and Objective: Generalized estimating equations are very common and popular in application correlated data and especially in longitudinal studies. However, despite the misspecification correlation structure between repeated measures of response variable, the estimation of the regression coefficients compatible will be asymptotic normal and consistent, however, for various reasons, su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2012